Monitoring of Nickel content in foodstuffs on the Luxembourgish market.

Contributions to dietary intake.

Luc SCHULER, Ph.D.
Division of Food Safety
Ministry of Health
Nickel related health hazards

- Nickel (Ni) is quite common in the rocks of the earth's crust and can therefore be found in foodstuffs and drinking water.
- Ni intake in the EU Member States varies and depends on the natural occurrence in the environment, local industry and consumption habits.
- Exposure: food intake, leaching from stainless steel cooking ware, ...
- Ni toxicity relates in allergic skin reactions in people sensitised to this metal.
- Inhalation of Ni may increase the risk of lung fibrosis and cancer of the respiratory tract.
- It is estimated that up to 17% of women and 3% of men are allergic to nickel.
- In 2015, EFSA fixed the tolerable daily intake at 2.8 µg/kg body weight which was updated to 13 µg/kg body weight in 2020.
- No official limits have been set.
Market monitoring

- Monitoring of contaminants in food allows:
 - obtaining representative data on the occurrence of substances in food and other commodities that are undesirable to health,
 - assess consumer exposure,
 - analysis of trends and recognition of potential health risks.

- The Luxembourgish market is unique in Europe; 625 000 residents, of which 47.4% are of foreign background representing 170 nationalities.

- The aim of this study was to analyse nickel content in plant based foods and beverages most commonly consumed in Luxembourg.

- 580 analysed samples from 2017-2020.
Ni content in analyzed food categories

- Beverages
- Food for infants and young children
- Fungi
- Fruits
- Grains and grain-based products
- Herbs, spices, and condiments
- Legumes, nuts, and oilseeds
- Products for special nutritional use
- Seaweed
- Vegetables
Kruszewski *et al.* reported a maximum Ni content of 12.1 mg/kg in raw cocoa and 4.5 mg/kg in chocolate.

Babaahmadifooladi *et al.* reported a nickel concentration varying from 0.883 to 8.457 mg/kg for chocolate and derived products.

EFSA reported high mean values for certain types of chocolate products (3.8 mg/kg) and cocoa products (9.5 mg/kg)
Ni content in analyzed food categories

The diagram above shows the nickel (Ni) content in various food categories. The x-axis represents different food categories, including Beverages, Chocolate, Food for infants and young children, Fungi, Grains and grain-based products, Herbs, spices and condiments, Legumes, nuts and olives, Products for special nutritional use, Seaweed, and Vegetables. The y-axis represents the Ni content in milligrams per kilogram (mg/kg). The box plots and individual data points illustrate the range and distribution of Ni content across these categories.
Aromatic herbs and spices

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>Minimum (mg/kg)</th>
<th>Maximum (mg/kg)</th>
<th>Mean (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basil</td>
<td>1</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Chive</td>
<td>1</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Oregano</td>
<td>13</td>
<td>0.300</td>
<td>8.600</td>
<td>3.383</td>
</tr>
<tr>
<td>Parsley</td>
<td>3</td>
<td>0.058</td>
<td>0.240</td>
<td>0.146</td>
</tr>
<tr>
<td>Rosemary</td>
<td>1</td>
<td>0.370</td>
<td>0.370</td>
<td>0.370</td>
</tr>
<tr>
<td>Chilis</td>
<td>3</td>
<td>0.400</td>
<td>2.500</td>
<td>1.240</td>
</tr>
<tr>
<td>Curry</td>
<td>5</td>
<td>0.810</td>
<td>1.600</td>
<td>1.128</td>
</tr>
<tr>
<td>Paprika</td>
<td>6</td>
<td>0.710</td>
<td>2.200</td>
<td>1.125</td>
</tr>
</tbody>
</table>

A study of the polish market revealed a Ni content in oregano of 10.6 mg/kg. Oregano seems to accumulate more Ni than other aromatic herbs.
Ni content in analyzed food categories

- Beverages
- Chocolate
- Food for infants and young children
- Fruits
- Fungi
- Grains and grain-based products
- Herbs, spices and condiments
- Legumes, nuts and oilseeds
- Products for special nutritional use
- Seaweed
- Vegetables

Luc Schuler – Monitoring of Ni in foodstuffs
Legumes

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black beans</td>
<td>4</td>
<td>5.700</td>
<td>8.100</td>
<td>7.000</td>
</tr>
<tr>
<td>Red beans</td>
<td>3</td>
<td>1.400</td>
<td>3.200</td>
<td>2.567</td>
</tr>
<tr>
<td>Soybeans</td>
<td>2</td>
<td>2.300</td>
<td>3.700</td>
<td>3.000</td>
</tr>
<tr>
<td>White beans</td>
<td>5</td>
<td>1.200</td>
<td>2.800</td>
<td>2.040</td>
</tr>
</tbody>
</table>

According to EFSA, dried beans contain mean levels of Ni ranging from 3.055 to 3.077 mg/kg.

A recent study from the Belgian market reported a nickel concentration of 2.892 mg/kg in different types of beans including white red and black beans.

Black beans seem to contain more than twice as much Ni than any other analysed sample of this category.
Ni content (mg/kg)

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almonds</td>
<td>10</td>
<td>0.571</td>
<td>1.450</td>
<td>1.007</td>
</tr>
<tr>
<td>Cashew nuts</td>
<td>5</td>
<td>4.000</td>
<td>12.000</td>
<td>6.780</td>
</tr>
<tr>
<td>Hazelnuts</td>
<td>5</td>
<td>1.100</td>
<td>2.500</td>
<td>1.920</td>
</tr>
<tr>
<td>Macadamias</td>
<td>5</td>
<td>0.860</td>
<td>1.500</td>
<td>1.128</td>
</tr>
<tr>
<td>Pistachios</td>
<td>30</td>
<td>0.086</td>
<td>1.400</td>
<td>0.804</td>
</tr>
<tr>
<td>Walnuts</td>
<td>5</td>
<td>1.800</td>
<td>3.800</td>
<td>2.820</td>
</tr>
</tbody>
</table>

Soares *et al.* reported a Ni content in cashews ranging from 3.6 to 6.8 mg/kg (mean 6 mg/kg).

Babaahmadifooladi *et al.* reported Ni content for almonds (0.577 to 1,092 mg/kg), hazelnuts (1.196 to 3.846 mg/kg), pistachio (0.406 to 1.740 mg/kg) and walnuts (0.721 to 4.624 mg/kg).

The setting of a potential maximum limit for Ni in nuts should be considered.
Oilseeds

Ni content (mg/kg)

<table>
<thead>
<tr>
<th>Product</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chia seeds</td>
<td>4</td>
<td>0.760</td>
<td>3.000</td>
<td>1.990</td>
</tr>
<tr>
<td>Hempseeds</td>
<td>4</td>
<td>0.760</td>
<td>8.000</td>
<td>2.890</td>
</tr>
<tr>
<td>Linseed</td>
<td>3</td>
<td>0.270</td>
<td>1.800</td>
<td>1.013</td>
</tr>
<tr>
<td>Maize</td>
<td>5</td>
<td>0.044</td>
<td>0.450</td>
<td>0.243</td>
</tr>
<tr>
<td>Peanuts</td>
<td>5</td>
<td>0.400</td>
<td>5.300</td>
<td>1.804</td>
</tr>
<tr>
<td>Poppy seeds</td>
<td>4</td>
<td>0.240</td>
<td>1.800</td>
<td>0.975</td>
</tr>
<tr>
<td>Pumpkin seeds</td>
<td>4</td>
<td>0.620</td>
<td>2.200</td>
<td>1.605</td>
</tr>
<tr>
<td>Sesame seeds</td>
<td>5</td>
<td>0.890</td>
<td>1.600</td>
<td>1.238</td>
</tr>
<tr>
<td>Sunflower seeds</td>
<td>3</td>
<td>3.200</td>
<td>8.100</td>
<td>5.533</td>
</tr>
</tbody>
</table>

Mihoc et al. reported a Ni content of up to 6 mg/kg in hempseeds depending on the variety.

Andersen et al. reported nickel contents of 25 samples of sunflower kernels ranging from 2.3 to 5.3 mg/kg.

Hemp (*Cannabis sativa* L.) and sunflower (*Helianthus annuus*) are known for their tolerance to elevated heavy metals in soils and their ability to bioaccumulate these pollutants.

Therefore, the use of hemp seeds, sunflower kernels, peanuts and their derived products in food for human consumption raises concerns about elevated Ni content.
Conclusions

- Soil contamination and geographical origin has a strong influence on contaminants level in the raw material.
- Ni is one of the substances for which the toxicological reference values are easily exceeded taking into account average exposure data for children.
- Increased nickel contents were found in nuts, oilseeds, legumes and chocolate/chocolate derived products.
- The careful selection of food with relatively low nickel concentration can result in the reduction in the total dietary intake of nickel per day.
References

