Pesticide residues in pollen collected by honeybees haro yer', they ynobel², the Kermann², Allanah Utcai², François Kraus³, Carlo Georges⁴, Cédric

- ¹ Agro-Environmental Systems, Luxembourg Institute of Science and Technology
- ² Biotechnologies & Environmental Analytics Platform, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422 Belvaux, Luxembourg
- ³ Administration des Services Techniques de l'Agriculture, B.P.1904, 1019 Luxembourg, Luxembourg
- ⁴ Administration des Services Vétérinaires, 211 route d'Esch, Luxembourg L-1471, Luxembourg

marco.beyer@list.lu

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Agriculture, de la Viticulture et du Développement rural

Original purpose(s) of the study

1. Identification of pesticide residues that may be related with colony losses

2. Description of the pesticide load in pollen over time (monitoring element of the *Plan d'action national de réduction des produits phytopharmaceutiques*)


What exactly is pollen?

Pollen is a powder, produced by the male part of a flower, that causes the female part of the same type of flower to produce seeds. It is carried by insects or the wind.

How can pollen be collect

Photos: Beyer

Why do bees collect pollen? The bee diet Pollen (Protein) Nectar (Carbohydrates) Water

Why consume pollen?

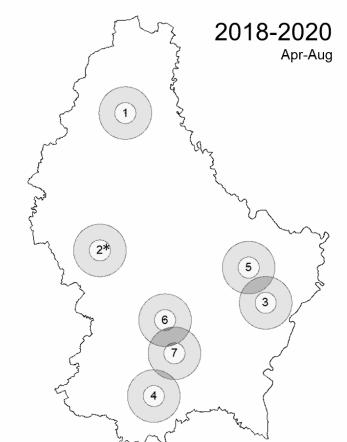
Claimed benefits of consuming pollen

- Broad nutritional profile with +250 active substances
- High antioxidant content
- May lower risk of high blood lipids and cholesterol
- May boost liver function / protect from toxic substances
- Anti-inflammatory properties
- May boost immunity & kill bacteria
- May support wound healing & prevent infections
- May have anti-cancer properties
- May ease menopausal symptoms

How much pollen consumption is advertised?

1/4 teaspoon up to 2 tablespoons / day

⇒ Rather low quantity compared with other food commodities

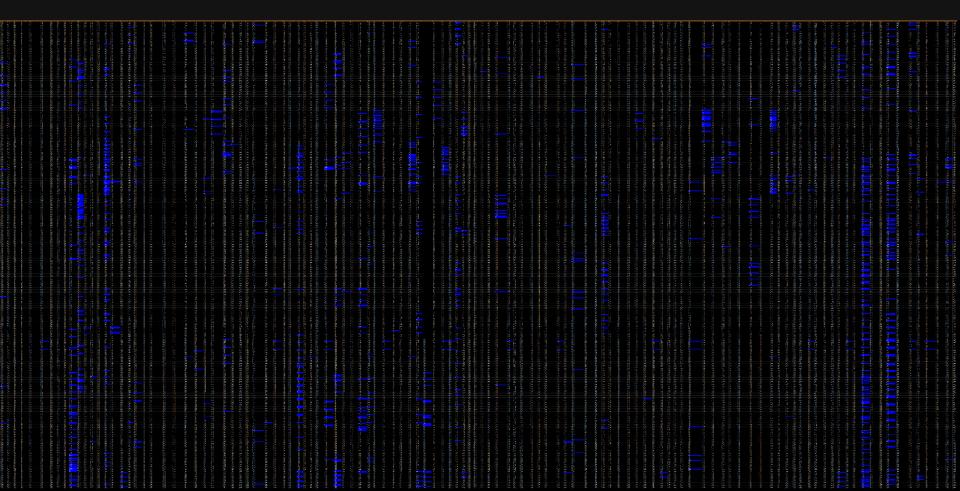

So far for the potential benefits . . .

...now let's have a look at one of the downsides

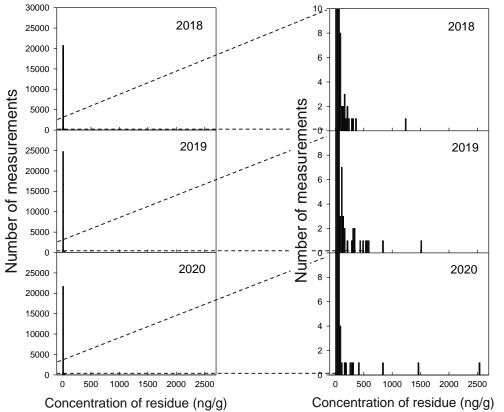
Pollen is a commodity that is particularly prone to get in contact with pesticides

Circles indicate 5 km radii that correspond approximately with the flight range of honey bees.

Pollen samplin


The locations

Methods


- Pollen was collected by honey bees
- Local bee keepers handed the pollen samples to LIST
- Time frame: April until August, years 2018-2020
- 4 colonies per location, 6 (2020)-7 (2018, 2019) locations, 2 samples per month
- Analytical chemistry at LIST: 115 (in 2020 116) active ingredients or their degradation products

115 (in 2020 116) compounds x 592 samples | positives are blue

Frequency of the positives (detected residues) 2018-

Measurements: 21045 Positives: 285 (= 1.35%)

Measurements : 25185 Positives: 448 (= 1.78%)

Measurements : 22040 Positives: 376 (= 1.71%)

What was found?

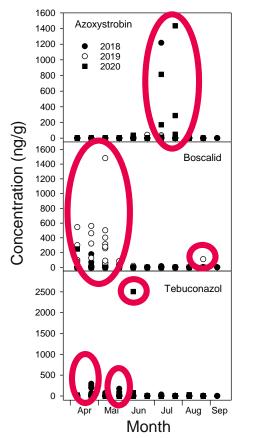
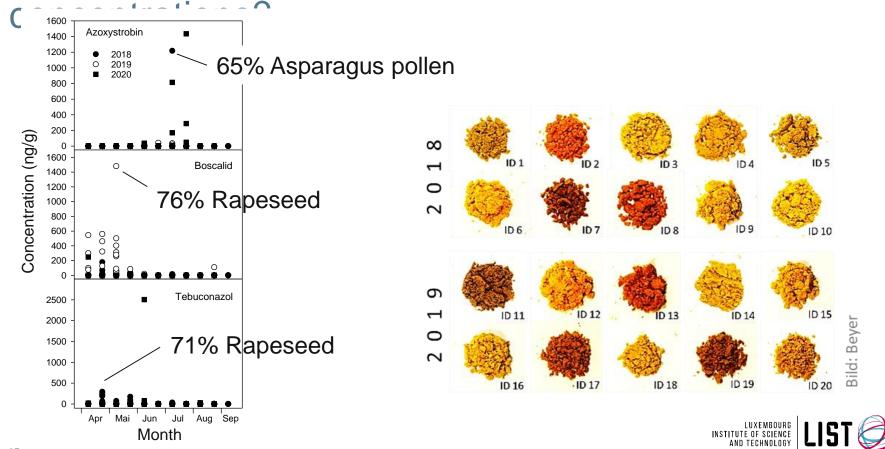

Compounds that were found in more than 5% of the samples

Table 1: Active ingredients of pesticides that were found in pollen samples from Luxembourg over the period 2018–2020. A total of 592 bee pollen samples from 7 apiaries were analyzed. For all compounds that were found only once, the concentration is given between the min and max columns.

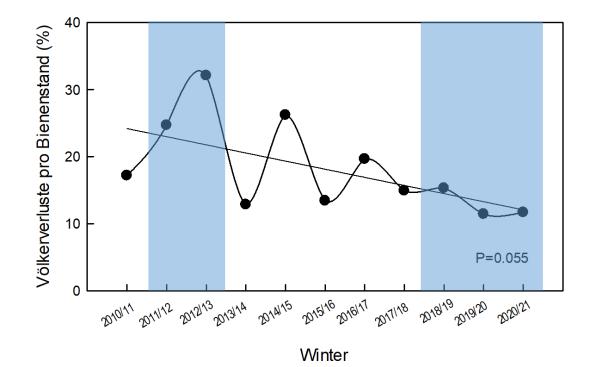
Compound	No. of positive samples	% of analyzed samples	Concentration range in positive samples (ng/g)		
		-	Min	Max	
Tebuconazole	114	19.3	0.95	2504.90	Fungicide
Thiacloprid	103	17.4	0.29	179.94	Insecticide, banned in the meantime
Boscalid	77	13.0	0.81	1480.31	Fungicide
DCBA (2,6-Dichlorobenzamide)	74	12.5	0.26	4.55	Degradation product of a herbicide
Azoxystrobin	63	10.6	0.42	1435.69	Fungicide
DET (Desethylterbuthylazine)	62	10.5	0.40	3.70	Degradation product of a herbicide
Diflufenican	39	6.6	0.32	17.62	> Herbicide
Flutolanil	38	6.4	0.88	13.40	Fungicide
Epoxiconazole	35	5.9	1.18	39.23	Fungicide, banned in the meantime
Methiocarb	32	5.4	0.96	11.43	Insecticide

When were high concentrations found?

Azoxystrobin 4 x 2020 1 x 2018 Boscalid


BOSCAIIO 3 x 2018 18 x 2019 1x 2020

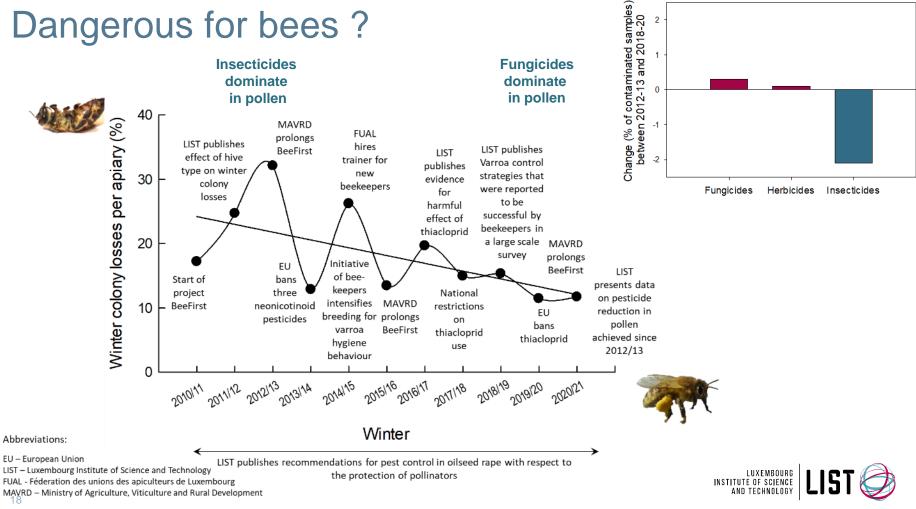
Tebuconazol 8 x 2018 2 x 2020 ⇒ Vast temporal fluctuations


 \Rightarrow Focus on specific months and years

What was the putative origin of the high

Dangerous for bees ?

Average winter colony losses (%) per apiary in Luxembourg between 2010/11 and 202/21 – the national level.


Dangerous for bees ?

Among the experimental colonies where pollen was sampled, the relationship between colony losses and pesticide residues was significant at P = 0.02 in 2012/13.

Using the same methods, this was not the case in 2018-20 anymore (P = 0.26).

How is that possible?

Dangerous for bees ?

2

Summary

Winter colony losses of honeybees averaged $28 \pm 4\%$ per apiary in the period 2012-2013 and $14 \pm 2\%$ in the period 2018-2020

In 2012-2013, a statistic relationship between pesticide residues in pollen and colony losses could be demonstrated, which was not the case in 2018-2020 anymore.

In 2012-2013, the pesticide residue mix in pollen was dominated by insecticides; in 2018-2020 it was dominated by fungicides.

The current data suggest that the pesticide residue mix in pollen became less risky for honeybees between 2012-13 and 2018-20.

Beyer M, Lenouvel A, Guignard C, Eickermann M, Clermont A, Kraus F, Hoffmann L (2018): Pesticide residue profiles in bee bread and pollen samples and the survival of honeybee colonies—a case study from Luxembourg. Environmental Science and Pollution Research 25: 32163– 32177. https://doi.org/10.1007/s11356-018-3187-4

We thank the beekeepers who provided pollen samples for the present study and the Ministry of Agriculture, Viticulture and Rural Development for supporting the project BeeFirst financially.

thank you

marco.beyer@list.lu For more info, please contact us at

info@list.lu +352 275 888 - 1

EXCELLENCE For impact

LIST.lu

Samman and a second sec

